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Multistability and symmetry breaking in the two-dimensional flow around a square cylinder
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We use numerical methods to study two-dimensional flow passing a square cylinder at low Reynolds
numbers, and observe period-1 and -3 vortices behind the cylinder at the same Reynolds number Re. When Re
increases from a small number to a critical valugR820, the system could change from bistability, which
maintains the spatial symmetry, to tristability, which breaks the spatial symmetry. Our results suggest many
interesting problems for further studi¢$1063-651X99)13711-5

PACS numbes): 47.20.Ky, 47.32.Cc, 47.54r, 47.15.Gf

Vortex shedding and wakes behind blunt bodies are imaries. The outlet boundary is selected at the cross section
portant subjects of study in aerodynamidd. For a long 20D downstream of the square cylinder. Here Neumann-type
time, people have been interested in the transition from lamiboundary conditions are used by settidty/9x=0 and
nar wakes to turbulent flow2] as the Reynolds number Re dV/9x=0. The flow of an incompressible Newtonian fluid
increases. In three-dimension@D) flow around a 3D cyl-  with uniform density can be described by the familiar incom-
inder, the system has effective 2D behavior at small Re angressible Navier-Stokes equations. For convenience of calcu-
3D behavior at large Re; many researchers have investigatdation, we use dimensionless Navier-Stokes equations with
the discontinuous transition and hysteresis between 2D palength normalized byD, velocity normalized byU,, and
allel laminar shedding and 3D shedding with mode A chartime normalized byD/U,. Then the simulated equations
acteristic[3] at Re~180-190 for 3D flow around a circular with dimensionless variables and parameters can be written
cylinder [2]. Similar results have been found in 3D flow

around some rectangular cylindddg. However, in the pe- ﬂ+ ﬂzo )
riodic vortex shedding of 3D flow around a square cylinder, ax oy

the measured Strouhal numigdoes not show a discontinu-

ous transitiof4]. Instead Sdecreases continuously when Re ouU ouU Ju P 1 (dU sU
exceeds some threshold value at~Ri80. On physical ot TV +VW =~ Re ﬁﬁL a_yz ,

grounds, we can argue that the decreasing@fs Re in-
creases, i.e.dSdRe<0, might lead to some instabilities,
which could result in discontinuous transitions and multista- ﬂ+ ﬂ+ ﬂz _ £+i
bility for some rectangular cylindergl]. In order to under- at IX ay dy Re
stand more clearly the vortex shedding processes behind a

square cylinder, in this paper we use numerical methods tavhereP is pressure and ReU,D/v is the Reynolds num-
study 2D flow around a square cylinder, which is computa-ber, with v being the fluid kinetic viscosity.

tionally tractable. We find very interesting results including It is clear to see that there is a reflective symmetry about
the coexistence of period-1 and -3 vortices behind the cylinthe horizontal axis in Fig. 1. This kind of spatial symmetry
der, which can trigger bistability or tristability in different shall hold the measured dimensionless quantities, i.e., the
regimes of Reynolds number. When the system is bistableStrouhal numberS (=fD/Ug) and lift coefficient C,

the spatial symmetry is still maintained. When the system ig=2F D ~/U3), equal to some fixed values. The meaning
tristable, the period-3 vortex loses spatial symmetry, but thef f andF, are the shedding frequency of vortices and the lift
period-1 vortex maintains the spatial symmetry. Thereforeforce acting on a unit length of a cylinder, respectively.
multistability with different dynamical characteristics can be When the fluid system shows steady wak8sand C, are

found in the 2D fluid system. equal to zero. Whe®+#0 andC, is periodic in time, peri-
We consider a 2D uniform stream passing a square cylin-

der with diameteD as shown in Fig. 1. In order to make the T

FAVARFLY,

E—’—ﬁ_yz . (3

U=U,, V=0

problem computationally tractable, boundaries are placed ’

sufficiently far away from the square cylinder so that their *°

presence has only a tiny effect on the flow. The solution %Uﬂjc 7 u=0 8U/0x=0
2V=0 a8v/ax=0

domain starts B upstream of the square cylinder and uni- —TV=0
form flow conditions, i.e., thex direction of fluid velocityU

equal to inlet mean velocity, and they direction of fluid
velocity V is zero, are prescribed there. The same boundary | U=lo, V=0

conditions are also applied to the upper and lower bound- — 4D a{ D}<— 200 —————

4.5D)

FIG. 1. Computational domain for the 2D flow around a square
*Electronic address: hsien@phys.sinica.edu.tw cylinder with diameteD.
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0.18 tions are derived in each cell to approximate Ed3—(3).

0.17 rescs Expt, Okagimali] The domain is divided into 250100 uniform grid cells. To

0.16 7 90000 Expl. Sohankar et al¢] avoid the well-known checkerboard problem of pressure

0.15 . = Nam: present (1) fields or pressure oscillation with grid length, we evaluate

014 . components of velocity at surfaces of grid cells and pressures
S 0.13 o e ° . at central points of grid cells. We thus construct a uniform

o1z - % R S staggered grid system. The difference equations used to re-

e B place Egs(2) and (3) are the first-order forward difference,

0.10 = %2 third-order upwind differencei.e., QUICK schemg and

0.09 7 R —— 3‘5—3_2; s second-order central difference schemes for transient terms,

O T T T Lo ke | at0 | b0 b0 700 at0  e00  1obo adveptwe terms, and dnffuswe terms, respe(;tl_\/ely. The com-

Re putation of incompressible fluid is more difficult than the

computation of compressible fluid. To carry out the numeri-

FIG. 2. The c_alculated and expe_rimental data of _Strouhal NUMe5) computation, we employed the MAC methid], which
ber S as a function of Re. The solid and dashed lines represe

calculated data for a period-1 vorteS) and a period-3 vortex s a partially implicit method for solving the time-dependent

(T3), respectively. The inset is the enlarged graph in the bistableequatlons Of_ mco_mpres_s_l_ble hydrodynamics. I.n Ofder to pre-
region. vent numerical instabilities, the Courant-Friedrichs-Lewy

condition and the restriction on the grid Fourier numbers

odic vortex shedding occurs. The transition from the steadyvere imposed. According to the condition, the distance the
wake to the vortex shedding is known as Hopf bifurcation,fluid travels in one time increment must be less than one
which implies that asymmetries might appear. But if we con-space increment, i.eAt<min(Ax/|U|,Ay/|V|). When the vis-
sider the time average &, in a period,(C_), we find that ~cous diffusion term is more important, the necessary condi-
(C\.) is still zero immediately after Hopf bifurcation. In other tion for stability is dictated by the restriction on the grid
words, the mirror symmetry is still maintained. Therefore, Fourier numbers, which results iit<0.5ReAx?Ay?/(Ax?
we may say that there are symmetry breaking solutions in- Ay?). The finalAt in our calculation is chosen to be the
this system if the periodic vortices with a nonzero value ofsmall number 0.005, which is much smaller than the stability
(Cyp). criteria.

In numerical iterations, the computational domain is first Numerically calculated and experimental data for Strou-
decomposed into a number of grid cells, and algebraic equadal numberS as a function of Re are presented in Fig. 2,

(a)

(c)

TIME

(b)

@

TIME

FIG. 3. (a) C, as a function of time for a period-1 vortex(b) C, as a function ot for a period-3 vortex(c) Contour plot of vorticity
for a period-1 vortex(d) Contour plot of vorticity for a period-3 vortex. All data are obtained atR€0. The dashed and solid lines in the
vorticity plot represent the vortex from the top edge and bottom edge of the square cylinder, respectively.
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FIG. 4. Time evolution ol (A) and —C,(B) at Re=324. FIG. 5.(C,) as a function of Re. The solid line and crosges

represent SV's with period-1T(l) and period-3 T3) vortices, re-
) . spectively. As Re=320, AV(A) and AV(B) with (C,)#0 appear,
where the experimental data of Okajiri&] and Sohankar and the system has tristability.

et al. [6] are for 3D flow around a square cylinder. Figure 2
shows that there is good qualitative and quantitative agreedistability; for Re>320, the system exhibits tristability. An-
ment between numerical results and experimental data in thether way to show the transition from monostability to tri-
region Re<250: that is, in both cases the bifurcation from stability is given in Fig. 6, in which the local maxima Gf ,

the steady wake to the laminar wake occurs atR2.5 and  (CL)m. are plotted as a function of Re. It is easy to find the
the transition fromdSdRe>0 to dS/dRe<0 appears at Correspondence between Figs. 5 and 6. _

Re~130. When Re 250, the qualitative behavior of simu- N summary, for 2D flow around a square cylinder, we use
lated results is no longer similar to that of experimental datahumerical methods to find steady wakes foxRe<42.5,

We speculate that this is due to the difference between 2[period-1 vortexes for 42:5Re<<294, bistability with only

and 3D systems, i.e., in this region the 3D flow of experi-SV for 294<Re<320, and tristability with both SV's and
mental systems cannot be considered as an effective 2D floV's for 320<Re<326. These results are different from the
This speculation is confirmed by our preliminary results forwell-known transition between 2D parallel vortex shedding
3D simulation[7]. We find that 3D vortex shedding with and 3D shedding with mode A characteristic in the 3D cyl-
mode A characteristic begins to appear atR60, and theS inder wake. Observation of 2D AV’s at low Reynolds num-
value in the 3D simulation is lower than that in the 2D simu-ber might imply that transition to turbulent flow in the 2D
lation. When Re=294, vortex shedding processes for 2D System also appears at lower Reynolds number because tur-
flow include both periods 1 and 3, which correspond to solidoulent flow destroys spatial symmetf9] and AV’s also

and dashed lines, respectively, in Fig. 2. Period-1 and -glestroy spatial symmetry. It is worthwhile to perform further
vortices can coexist at the same Reynolds number and tHgvestigation on pattern competition between SV-SV, SV-
dynamical system shows the bistability. In Fig. 3, we illus-AV, and AV-AV conditions by statistical analysis, i.e., spec-
trate the coexistence of period-1 and -3 vortices via the timéral pattern entropy10], which might give new insight on
evolution of C, and contour plot of vorticity at Re300.  the pattern-forming system. It is also of interest to study 2D
From plots ofC, vst in Figs. 3a) and 3b), we can clearly uniform flow arqund a square cylinder with low Reynolds
distinguish period-1 and -3 patterns. In contour plots of vor-number in experiments. Recently, Kellay al. [11] studied

ticity in Figs. 3c) and 3d), the period-3 vortex shows larger 2D turbulence ina vert_lcal soap fll_m channgl drlvgn by grav-
fluctuations in the far wake than the period-1 vortex. Whenlty- If we can drive their system with small incoming veloc-
we evaluate time average &, to obtain(C,), we find ity and p.roduce laminar ﬂgw, the phenomena we have pre-
(C_)=0 for both period-one and period-3 vortexes at Redicted might be observed in experiments.

=300. In other words, these two vortices sustain the spatial 2.2
symmetry and they are called symmetric vortid&/’s). i
When Re is larger than 320, the symmetry breaking instabil- 2.0 . ) R
ity [8] occurs and the period-3 vortex bifurcates into two 1 e e Lo e

new period-3 vortex states, which break the spatial symmetry 1.8 - //

and are called asymmetric vorticé&V's); two AV states (Cm

are denoted by AYA) and AV(B). In Fig. 4, we plotC, (A) 1.6 -

(solid line) and — C (B) (circle) for AV (A) and AV(B), re- 4 R
spectively, at Re 324 as a function of time. We find that 14 I : ...
C_(A)=—C.(B) and(C_(A))=—(C_(B))=0.003, which i

indicates symmetry breaking. The transition from symmetric 1.2 — —— — — :

to asymmetric vortices is illustrated in ti€ ) vs Re bifur- 290 300 310 320 330

cation diagram in Fig. 5. In Fig. 5, the solid line and crosses Re

denote the period-1 SV and period-3 SV, respectively, and F|G. 6. The local maximum o€, , (C,)., as a function of Re.
squares and circles denote M) and AV(B), respectively.  The solid line and crossex) represent SV's with period-1T(1)
The transition from period-3 SV to period-3 AV is due to the and period-3 T3) vortices, respectively. The latter bifurcates into
pitchfork bifurcation. For 294 Re< 320, the system exhibits AV(A) (squar¢ and AV(B) (circle) a period-3 as Re 320.
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In conclusion, our results provide a new understanding of We thank Dr. Jonatham Dushoff for a critical reading of
the 2D flow around a square cylinder, which is rather differ-the paper. This work was supported in part by the National
ent from earlier studies for 2D flow. Our results should in- Science Council of the Republic of Chif@aiwan under
spire new numerical, analytic, and experimental studies o€ontract Nos. NSC 87-2611-E-001-001 and NSC 87-2112-
flow around cylinders. M-001-046.
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